Differential Distribution of Unmodified and Phosphorylated Histone Deacetylase 2 in Chromatin

2007 
Abstract Histone deacetylase 2 (HDAC2) is one of the histone-modifying enzymes that regulate gene expression by remodeling chromatin structure. Along with HDAC1, HDAC2 is found in the Sin3 and NuRD multiprotein complexes, which are recruited to promoters by DNA-binding proteins. In this study, we show that the majority of HDAC2 in human breast cancer cells is not phosphorylated. However, the minor population of HDAC2, preferentially cross-linked to DNA by cisplatin, is mono-, di-, or tri-phosphorylated. Furthermore, HDAC2 phosphorylation is required for formation of Sin3 and NuRD complexes and recruitment to promoters by transcription factors including p53, Rb, YY1, NF-κB, Sp1, and Sp3. Unmodified HDAC2 requires linker DNA to associate with chromatin but is not cross-linked to DNA by formaldehyde. We provide evidence that unmodified HDAC2 is associated with the coding region of transcribed genes, whereas phosphorylated HDAC2 is primarily recruited to promoters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    48
    Citations
    NaN
    KQI
    []