Paradoxically sparse chemosensory tuning in broadly-integrating external granule cells in the mouse accessory olfactory bulb

2019 
The accessory olfactory bulb (AOB) is a critical circuit in the mouse accessory olfactory system (AOS), but AOB processing is poorly understood compared to the main olfactory bulb (MOB). We used 2-photon GCaMP6f Ca2+ imaging in an ex vivo preparation to study the chemosensory tuning of AOB external granule cells (EGCs), an interneuron population hypothesized to broadly integrate from mitral cells (MCs). We measured MC and EGC tuning to natural chemosignal blends and monomolecular ligands, finding that EGC tuning was far sparser than MC tuning. Simultaneous patch-clamp electrophysiology and Ca2+ imaging indicated that this was only partially explained by lower GCaMP6f-to-spiking ratios in EGCs compared to MCs. Ex vivo patch-clamp recordings revealed that EGC subthreshold responsivity was broad, but monomolecular ligand responses were insufficient to elicit spiking. These results indicate that EGC spiking is selectively engaged by chemosensory blends, suggesting different roles for EGCs than analogous interneurons in the MOB.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    0
    Citations
    NaN
    KQI
    []