Event-triggered Finite-time Consensus under Directed Graphs

2020 
Abstract This paper focuses on deal with the finite-time consensus with event-triggered control strategy for multi-agent systems (MASs). An event-triggered protocol for finite-time consensus is designed using relative measurements. The coordination measurement error is utilized in the triggering condition design for the purpose of removing the prerequisite of topology graph knowledge. Under strongly connected graph assumptions, by utilizing the proposed consensus protocol, all agents can complete consensus and Zeno behaviour will not happen in a settling time. Next, by decomposing the Laplacian matrix in Frobenius norm form, the results are extended to the more general graphs containing a directed spanning tree. At last, a numerical example demonstrates the validity of the algorithm results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []