Evaluation of Turning-Sized Gold Nanoparticles (TSGN) on Cellular Adhesion by Golgi disruption in vitro and in vivo

2019 
In contrast to the booming production and application of nanomaterials, research on the toxicological impacts and possible hazards of nanoparticles to tissues and organs is still in its infancy. Golgi apparatus is one of the most important organelles in cells and plays a key role in intracellular protein processing. The structural integrity of Golgi is vital for its normal function, and Golgi disturbance could result in a wide range of diseases and disorders. In this study, for the first time we found gold nanoparticles (Au NPs) induced size-dependent cytoplasmic calcium increase and Golgi fragmentation, which hampers normal Golgi functions, leads to abnormal protein processing, and causes cellular adhesion decrease, while cell viability was not significantly compromised. Additionally, early renal pathological changes were induced in vivo. This work is significant to nanoparticle research because it illustrates the important role of size on Au NP-induced changes in Golgi morphology and their consequences ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    9
    Citations
    NaN
    KQI
    []