Hyaluronic acid hydrogel immobilized with RGD peptides for brain tissue engineering

2006 
In this paper, hyaluronic acid hydrogels with open porous structure have been developed for scaffold of brain tissue engineering. A short peptide sequence of arginine–glycine–aspartic acid (RGD) was immobilized on the backbone of the hydrogels. Both unmodified hydrogels and those modified with RGD were implanted into the defects of cortex in rats and evaluated for their ability to improve tissue reconstruction. After 6 and 12 weeks, sections of brains were processed for DAB and Glees staining. They were also labeled with GFAP and ED1 antibodies, and observed under the SEM for ultrastructral examination. After implanting into the lesion of cortex, the porous hydrogels functioned as a scaffold to support cells infiltration and angiogenesis, simultaneously inhibitting the formation of glial scar. In addition, HA hydrogels modified with RGD were able to promote neurites extension. Our experiments showed that the hyaluronic acid-RGD hydrogel provided a structural, three-dimensional continuity across the defect and favoured reorganization of local wound-repair cells, angiogenesis and axonal growth into the hydrogel scaffold, while there was little evidence of axons regeneration in unmodified hydrogel.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    115
    Citations
    NaN
    KQI
    []