New High-Gain Differential-Fed Dual-Polarized Filtering Microstrip Antenna for 5G Applications

2020 
In this paper, a new high-gain differential-fed dual-polarized microstrip filtering antenna with high commonmode rejection is presented. Two differential pairs of probe feeding ports are utilized to provide differentially exciting signals. The filtering response is achieved by introducing four symmetrical open-loop ring resonator slots on the top layer surrounding the four excitation ports of the patch antenna. The resonators can produce nulls at the low edge of the passband bandwidth with high gain and wide stopband characteristics. Because of the strictly symmetric configuration of the proposed antenna, the design is studied and analyzed only in one polarization configuration. Compared with other presented filtering antenna designs, the proposed design has not only high gain and dual-polarized characteristics but also introduces high efficiency and much lower cross-polarization level due to the differentially driven ports. The filtering antenna is designed, simulated and optimized using computer simulation technology (CST) software and is implemented on a Rogers TMM3 substrate with a relative dielectric constant of 3.45. Also, the antenna has a single layer substrate with a height of 0.035 of the free space wavelength and operating at 3.54 GHz for 5G applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    4
    Citations
    NaN
    KQI
    []