JAXED: Reverse Engineering DNN Architectures Leveraging JIT GEMM Libraries

2021 
General matrix multiplication (GEMM) libraries on x86 architectures have recently adopted Just-in-time (JIT) based optimizations to dramatically reduce the execution time of small and medium-sized matrix multiplication. The exploitation of the latest CPU architectural extensions, such as the AVX2 and AVX-512 extensions, are the target for these optimizations. Although JIT compilers can provide impressive speedups to GEMM libraries, they expose a new attack surface through the built-in JIT code caches. These software-based caches allow an adversary to extract sensitive information through carefully designed timing attacks. The attack surface of such libraries has become more prominent due to their widespread integration into popular Machine Learning (ML) frameworks such as PyTorch and Tensorflow.In our paper, we present a novel attack strategy for JIT-compiled GEMM libraries called JAXED. We demonstrate how an adversary can exploit the GEMM library’s vulnerable state management to extract confidential CNN model hyperparameters. We show that using JAXED, one can successfully extract the hyperparameters of models with fully-connected layers with an average accuracy of 92%. Further, we demonstrate our attack against the final fully connected layer of 10 popular DNN models. Finally, we perform an end-to-end attack on MobileNetV2, on both the convolution and FC layers, successfully extracting model hyperparameters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    0
    Citations
    NaN
    KQI
    []