Electrochemical reductive remediation of trichloroethylene contaminated groundwater using biomimetic iron-nitrogen-doped carbon.

2021 
Abstract Electrochemical dechlorination is a prospective strategy to remediate trichloroethylene (TCE)-contaminated groundwater. In this work, iron-nitrogen-doped carbon (FeNC) mimicking microbiological dechlorination coenzymes was developed for TCE removal under environmentally related conditions. The biomimetic FeNC-900, FeNC-1000, and FeNC-1100 materials were synthesized via pyrolysis at different temperatures (900, 1000, and 1100 °C). Due to the synergistic effect of Fe–N4 active sites and graphitic N sites, FeNC-1000 had the highest electron transfer efficiency and the largest electrochemical active surface area among the as-synthesized FeNC catalysts. The pseudo-first-order rate constants for TCE reduction using FeNC-1000 catalyst are 0.19, 0.28 and 0.36 h−1 at potentials of −0.8 V, −1.0 V and −1.2 V, respectively. Active hydrogen and direct electrons transfer both contribute to the dechlorination from TCE to C2H4 and C2H6. FeNC maintain a high reactivity after five reuse cycles. Our study provides a novel approach for the dechlorination of chlorinated organic contaminants in groundwater.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    0
    Citations
    NaN
    KQI
    []