Two-Dimensional Full-Waveform Joint Inversion of Surface Waves Using Phases and Z/H Ratios

2021 
Surface-wave dispersion and the Z/H ratio are important parameters used to resolve the Earth’s structure, especially for S-wave velocity. Several previous studies have explored using joint inversion of these two datasets. However, all of these studies used a 1-D depth-sensitivity kernel, which lacks precision when the structure is laterally heterogeneous. Adjoint tomography (i.e., full-waveform inversion) is a state-of-the-art imaging method with a high resolution. It can obtain better-resolved lithospheric structures beyond the resolving ability of traditional ray-based travel-time tomography. In this study, we present a systematic investigation of the 2D sensitivities of the surface wave phase and Z/H ratio using the adjoint-state method. The forward-modeling experiments indicated that the 2D phase and Z/H ratio had different sensitivities to the S-wave velocity. Thus, a full-waveform joint-inversion scheme of surface waves with phases and a Z/H ratio was proposed to take advantage of their complementary sensitivities to the Earth’s structure. Both applications to synthetic data sets in large- and small-scale inversions demonstrated the advantage of the joint inversion over the individual inversions, allowing for the creation of a more unified S-wave velocity model. The proposed joint-inversion scheme offers a computationally efficient and inexpensive alternative to imaging fine-scale shallow structures beneath a 2D seismic array.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []