Muon spin relaxation and hyperfine-enhancedPr141nuclear spin dynamics inPr(Os,Ru)4Sb12and(Pr,La)Os4Sb12

2007 
Zero- and longitudinal-field muon spin relaxation experiments have been carried out in the alloy series $\mathrm{Pr}{({\mathrm{Os}}_{1\ensuremath{-}x}{\mathrm{Ru}}_{x})}_{4}{\mathrm{Sb}}_{12}$ and ${\mathrm{Pr}}_{1\ensuremath{-}y}{\mathrm{La}}_{y}{\mathrm{Os}}_{4}{\mathrm{Sb}}_{12}$ to elucidate the anomalous dynamic muon spin relaxation observed in these materials. The damping rate $\ensuremath{\Lambda}$ associated with this relaxation varies with temperature, applied magnetic field, and dopant concentrations $x$ and $y$ in a manner consistent with the ``hyperfine enhancement'' of $^{141}\mathrm{Pr}$ nuclear spins first discussed by Bleaney [Physica (Utrecht) 69, 317 (1973)]. This mechanism arises from Van Vleck-like admixture of magnetic ${\mathrm{Pr}}^{3+}$ crystalline-electric-field-split excited states into the nonmagnetic singlet ground state by the nuclear hyperfine coupling, thereby increasing the strengths of spin-spin interactions between $^{141}\mathrm{Pr}$ and muon spins and within the $^{141}\mathrm{Pr}$ spin system. We find qualitative agreement with this scenario and conclude that electronic spin fluctuations are not directly involved in the dynamic muon spin relaxation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    9
    Citations
    NaN
    KQI
    []