PathEnum: Towards Real-Time Hop-Constrained s-t PathEnumeration.

2021 
We study the hop-constrained s-t path enumeration (HcPE) problem, which takes a graph $G$, two distinct vertices $s,t$ and a hop constraint $k$ as input, and outputs all paths from $s$ to $t$ whose length is at most $k$. The state-of-the-art algorithms suffer from severe performance issues caused by the costly pruning operations during enumeration for the workloads with the large search space. Consequently, these algorithms hardly meet the real-time constraints of many online applications. In this paper, we propose PathEnum, an efficient index-based algorithm towards real-time HcPE. For an input query, PathEnum first builds a light-weight index aiming to reduce the number of edges involved in the enumeration, and develops efficient index-based approaches for enumeration, one based on depth-first search and the other based on joins. We further develop a query optimizer based on a join-based cost model to optimize the search order. We conduct experiments with 15 real-world graphs. Our experiment results show that PathEnum outperforms the state-of-the-art approaches by orders of magnitude in terms of the query time, throughput and response time.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []