Helicopter Structural Life Modeling: Flight Regime and Gross Weight Estimation

2007 
Accurate usage information collected by Health and Usage Monitoring Systems (HUMS) coupled with improved structural fatigue life calculation methodologies promise to reduce helicopter operational and support costs while maintaining current flight safety levels. Current fatigue life calculations assume worst-case flight profiles in determining component life. This approach may be outdated or not reflective of actual aircraft usage. On a small business innovative research (SBIR) contract the Intelligent Automation Corporation (IAC) has developed processing to include a low cost regime recognition and aircraft gross weight estimation capability as an extension to the US Army’s Vibration Management Enhancement Program (VMEP). IAC’s approach relies on multi-sensor data fusion technology and flight parameters collected by VMEP to provide an accurate flight regime calculation. Recording time in particular flight regimes has the potential of extending aircraft component life without changing proven lifing models. The regime recognition system has been implemented with the current release of IAC’s VMEP systems. Presented here are the methodology, development and visualization tools developed on the SBIR as well as results for using the system on AH-64 aircraft in follow-on work.Copyright © 2007 by ASME
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []