Low Power Aging-Aware On-Chip Memory Structure Design by Duty Cycle Balancing

2016 
The degradation of CMOS devices over the lifetime can cause severe threat to the system performance and reliability at deep submicron semiconductor technologies. The negative bias temperature instability (NBTI) is among the most important sources of the aging mechanisms. Applying the traditional guardbanding technique to address the decreased speed of devices is too costly. On-chip memory structures, such as register files and on-chip caches, suffer a very high NBTI stress. In this paper, we propose the aging-aware design to combat the NBTI-induced aging in integer register files, data caches and instruction caches in high-performance microprocessors. The proposed aging-aware design can mitigate the negative aging effects by balancing the duty cycle ratio of the internal bits in on-chip memory structures. Besides the aging problem, the power consumption is also one of the most prominent issues in microprocessor design. Therefore, we further propose to apply the low power schemes to different memory structures under aging-aware design. The proposed low power aging-aware design can also achieve a significant power reduction, which will further reduce the temperature and NBTI degradation of the on-chip memory structures. Our experimental results show that our aging-aware design can effectively reduce the NBTI stress with 30.8%, 64.5% and 72.0% power saving for the integer register file, data cache and instruction cache, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    1
    Citations
    NaN
    KQI
    []