Surface NH2-functionalized by C doping of boron nitride nanotube to improve the thermal conductivity of epoxy composites

2021 
Abstract To reduce the interfacial thermal resistance between boron nitride nanotubes (BNNTs) and epoxy resin, we report a novel method to obtain NH2-functionalized BNNTs with a perfect crystal structure by C doping to construct chemically active sites on the BNNT surface (BNNT-A), and compare it with the conventional method of NH2-functionalized BNNTs by breaking the B–N bond (BNNT-B). The results show that the insulation properties and thermal conductivity of BNNT-A were better than those of BNNT-B. When the NH2-functionalized ratio was 5%, the thermal conductivity of BNNT-A was improved by 12.21 W/(m·K) compared with that of BNNT-B. NH2 functionalization had little effect on the insulation properties of BNNT-A/epoxy resin (BNNT-A-EP), and BNNT-B/epoxy resin (BNNT-B-EP) comparing with BNNT/epoxy resin (BNNT-EP). The thermal conductivity of BNNT-A-EP was 2.52 W/(m·K), which was improved by 23.5% and 77.5% compared with BNNT-B-EP and BNNT-EP, respectively. In addition, the volume change rate of BNNT-A-EP was reduced by 27.6% and 50% relative to BNNT-EP and BNNT-B-EP. The functionalization of NH2 on the surface of BNNTs by C doping can establish an effective heat transfer "bridge" between BNNTs and epoxy resin, which is beneficial for improving the thermal conductivity of epoxy composites. This work presents a strong potential method to reduce the interfacial thermal resistance of electronic packaging materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    2
    Citations
    NaN
    KQI
    []