Example Applications of Satellite Monitoring for Post-tunnelling Settlement Damage Assessment for the Crossrail Project in London

2019 
Structural monitoring of surface building displacements is a significant component of the total financial investment for underground construction projects in urban areas. While traditional monitoring requires in-situ (terrestrial) measurements and trigger levels based on preliminary evaluation of vulnerable structures, very recent advances in Interferometric Synthetic Aperture Radar (InSAR) techniques enable remote monitoring over extensive areas, providing rapid, semi-automatic, and dense measurements with millimetre accuracy. Despite the well-established use of InSAR in geophysical applications, only a few studies are currently available on the use of satellite-based monitoring for the assessment of building deformations and structural damage. The aim of this project is to investigate the potential of InSAR monitoring data as an input to post-tunnelling damage assessment procedures. First, InSAR-based measurements of building displacements, induced by the excavation of Crossrail tunnels in London, were acquired and processed. Then, following the definition of a step-by-step procedure, the satellite-based building displacements were used to evaluate structural deformation parameters typically used in extensive damage assessment procedures. Results show that the number of available measures per single building can enable the estimation of deformation parameters, a capability that is not economically feasible for large scale projects using traditional monitoring systems. The comparison with greenfield predictions offers new insight into the effect of soil-structure interaction and demonstrates the suitability of InSAR monitoring for post-tunnelling damage assessment of structures. The outcome of this work can have a significant economic impact on the construction industry and can advance the knowledge of building and infrastructure response to ground subsidence.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    1
    Citations
    NaN
    KQI
    []