Atomic structure of the human herpesvirus 6B capsid and capsid-associated tegument complexes

2019 
Human herpesvirus 6B (HHV-6B) belongs to the β-herpesvirus subfamily of the Herpesviridae. To understand capsid assembly and capsid-tegument interactions, here we report atomic structures of HHV-6B capsid and capsid-associated tegument complex (CATC) obtained by cryoEM and sub-particle reconstruction. Compared to other β-herpesviruses, HHV-6B exhibits high similarity in capsid structure but organizational differences in its CATC (pU11 tetramer). 180 “VΛ”-shaped CATCs are observed in HHV-6B, distinguishing from the 255 “Λ”-shaped dimeric CATCs observed in murine cytomegalovirus and the 310 “Δ”-shaped CATCs in human cytomegalovirus. This trend in CATC quantity correlates with the increasing genomes sizes of these β-herpesviruses. Incompatible distances revealed by the atomic structures rationalize the lack of CATC’s binding to triplexes Ta, Tc, and Tf in HHV-6B. Our results offer insights into HHV-6B capsid assembly and the roles of its tegument proteins, including not only the β-herpesvirus-specific pU11 and pU14, but also those conserved across all subfamilies of Herpesviridae. Human Herpesvirus 6B (HHV-6) can cause fever, diarrhea and roseola rash. Here the authors present a cryoEM approach to image crude, minimally purified virus samples and employ it to determine the atomic structures of HHV-6B capsid and capsid-associated tegument protein complexes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    12
    Citations
    NaN
    KQI
    []