Topological optical and phononic interface mode by simultaneous band inversion

2021 
Interface modes have been widely explored in the field of electronics, optics, acoustics and nanophononics. One strategy to generate them is band inversion in one-dimensional superlattices. Most realizations of this type of topological states have so far been explored for a single kind of excitation. Despite its potential in the manipulation and engineering of interactions, platforms for the simultaneous topological confinement of multiple excitations remain an open challenge. GaAs/AlAs heterostructures exhibit enhanced optomechanical interactions due to the intrinsic colocalization of light and sound. In this work, we designed, fabricated, and experimentally studied a multilayered structure based on GaAs/AlAs. Due to the simultaneously inverted band structures for light and phonons, colocalized interface modes for both 1.34 eV photons and 18 GHz phonons appear. We experimentally validated the concept by optical reflectivity and coherent phonon generation and detection. Furthermore, we theoretically analyzed the performance of different topological designs presenting colocalized states in time-domain Brillouin scattering and deduce engineering rules. Potential future applications include the engineering of robust optomechanical resonators, compatible with the incorporation of active media such as quantum wells and quantum dots.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    2
    Citations
    NaN
    KQI
    []