Radiosynthesis and preclinical evaluation of a carbon-11 labeled PDE7 inhibitor for PET neuroimaging

2021 
Background: Dysfunction of cyclic nucleotide phosphodiesterase 7 (PDE7) has been associated with excess intracellular cAMP concentrations, fueling pathogenic processes that are implicated in neurodegenerative disorders. The aim of this study was to develop a suitable PDE7-targeted positron emission tomography (PET) probe that allows non-invasive mapping of PDE7 in the mammalian brain. Methods: Based on a spiro cyclohexane-1,49-quinazolinone scaffold with known inhibitory properties towards PDE7, we designed and synthesized a methoxy analog that was suitable for carbon-11 labeling. Radiosynthesis was conducted with the respective desmethyl precursor using [11C]MeI. The resulting PET probe, codenamed [11C]26, was evaluated by cell uptake studies, ex vivo biodistribution and radiometabolite studies, as well as in vivo PET experiments in rodents and non-human primates (NHP). Results: Target compound 26 and the corresponding phenolic precursor were synthesized in 2-3 steps with overall yields of 49.5% and 12.4%, respectively. An inhibitory constant (IC50) of 31 nM towards PDE7A was obtained and no significant interaction with other PDE isoforms were observed. [11C]26 was synthesized in high molar activities (170 - 220 GBq/μmol) with radiochemical yields of 34±7%. In vitro cell uptake of [11C]26 was 6-7 fold higher in PDE7B overexpressing cells, as compared to the controls, whereas an in vitro specificity of up to 90% was measured. Ex vivo metabolite studies revealed a high fraction of intact parent in the rat brain (98% at 5 min and 75% at 30 min post injection). Considerable brain penetration was further corroborated by ex vivo biodistribution and PET imaging studies – the latter showing heterogenic brain uptake. While marginal specific binding was observed by PET studies in rodents, a moderate, but dose-dependent, blockade was observed in the NHP brain following pretreatment with non-radioactive 26. Conclusion: In this work, we report on the preclinical evaluation of [11C]26 ( [11C]P7-2104), a PDE7-targeted PET ligand that is based on a spiroquinazolinone scaffold. [11C]26 displayed promising in vitro performance characteristics, a moderate degree of specific binding in PET studies with NHP. Accordingly, [11C]26 will serve as a valuable lead compound for the development of a new arsenal of PDE7-targeted probes with potentially improved in vivo specificity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []