Pharyngeal motor cortex grey matter abnormalities and retinal photoreceptor layer dysfunction in macaques exposed to Zika virus in utero

2019 
One third of infants who have prenatal Zika virus (ZIKV) exposure and lack significant defects consistent with congenital Zika syndrome (CZS) manifest neurodevelopmental deficits in their second year of life. We hypothesized that prenatal ZIKV exposure would lead to brain abnormalities and neurodevelopmental delays in infant macaques, as measured by quantitative hearing, neurodevelopmental, ocular and brain imaging studies. We inoculated 5 pregnant rhesus macaques with ZIKV during the first trimester, monitored pregnancies with serial ultrasounds, determined plasma viral RNA (vRNA) loads, and evaluated the infants for birth defects and neurodevelopmental deficits during their first week of life. ZIKV-exposed and control infants (n=16) were evaluated with neurobehavioral assessments, ophthalmic examinations, optical coherence tomography, electroretinography with visual evoked potentials, hearing examinations, magnetic resonance imaging (MRI) of the brain, gross post mortem examination, and histopathological and vRNA analyses of approximately 40 tissues and fluids. All 5 dams had ZIKV vRNA in plasma and seroconverted following ZIKV inoculation. One pregnancy resulted in a stillbirth. The ZIKV-exposed infants had decreased cumulative feeding volumes and weight gains compared with control infants, and also had grey matter abnormalities in the pharyngeal motor cortex identified by quantitative voxel-based morphometric comparisons. Quantitative ocular studies identified differences between ZIKV-exposed and control infants in retinal layer thicknesses and electroretinograms that were not identified in qualitative ophthalmic evaluations. Despite these findings of neuropathology, no ZIKV vRNA or IgM was detected in the infants. This suggests that ZIKV exposure without measurable vertical transmission can affect brain development in utero and that subtle neurodevelopmental delays may be detected with quantitative analyses in early infancy. Quantitative brain analyses, such as these, may predict neurodevelopmental delays that manifest later in childhood and allow early intervention and targeted therapies to improve functional outcomes of ZIKV exposed children.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    97
    References
    0
    Citations
    NaN
    KQI
    []