Extension of a gaseous dry deposition algorithm to oxidized volatile organic compounds and hydrogen cyanide for application in chemistry transport models

2021 
Abstract. With increasing complexity of air quality models, additional chemical species have been included in model simulations for which dry deposition processes need to be parameterized. For this purpose, the gaseous dry deposition scheme of Zhang et al. (2003) is extended to include 12 oxidized volatile organic compounds (oVOCs) and hydrogen cyanide (HCN) based on their physicochemical properties, namely the effective Henry's law constants and oxidizing capacities. Modeled dry deposition velocity (Vd) values are compared against field flux measurements over a mixed forest in the southeastern U.S. during June 2013. The model captures the basic features of the diel cycles of the observed Vd. Modeled Vd values are comparable to the measurements for most of the oVOCs at night. However, modeled Vd values are mostly around 1 cm s−1 during daytime, which is much smaller than the observed daytime maxima of 2–5 cm s−1. Analysis of the individual resistance terms/uptake pathways suggests that flux divergence due to fast atmospheric chemical reactions near the canopy was likely the main cause of the large model-measurement discrepancies during daytime. The extended dry deposition scheme likely provides conservative Vd values for many oVOCs. While higher Vd values and bi-directional fluxes can be simulated by coupling key atmospheric chemical processes into the dry deposition scheme, we suggest that more experimental evidence of high oVOC Vd values at additional sites is required to confirm the broader applicability of the high values studied here. The underlying processes leading to high measured oVOC Vd values require further investigation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []