Sequence and functional analysis of intestinal alkaline phosphatase from Lateolabrax maculatus

2017 
Alkaline phosphatases (Alps) belong to a class of phosphate transferases that dephosphorylate lipopolysaccharide (LPS), adenosine triphosphate, and nucleotides. In this study, a 1874-base pair (bp) intestinal alp cDNA sequence was cloned from Lateolabrax maculatus and designated as Lm-alpi. It contained a 1611 bp open reading frame which encoded a protein with 537 amino acids. Protein sequence alignment showed that Lm-AlpI shared 29.8–79.8% identity with its homologs. Lm-AlpI catalytic sites contained three metal ion sites (two Zn2+ and one Mg2+), referring to D73, H184, D348, H349, H352, H464, D389, and H390 residues, which are essential for enzymatic activity and conservation in different organisms. Two predicted disulfide bonds in Lm-AlpI were composed of four cysteines (C152–C214 and C499–C506), which were homologous to those of mammals. Immunohistochemical staining revealed that Lm-AlpI was mainly expressed on the mucosal surface of the gastrointestinal tract, including stomach, intestine, and gastric cecum. Lm-AlpI was mainly located on the plasma membrane of transiently transfected HeLa cells. The mRNA of Lm-alpi was mainly expressed in the intestine, and its expression levels gradually increased after LPS treatment and further increased by 1.81-fold after 48 h. After desalting culture, the relative mRNA expression level of Lm-alpi decreased at 30 and 50 days after hatching (DAH) and then returned to normal levels at 70 DAH. Further experiments demonstrated that the enzyme activity of Lm-AlpI exhibited an expression pattern similar to that of the mRNA expression of Lm-alpi after LPS treatment and desalting culture. This study provided valuable information on the Lm-AlpI functions associated with the mucosal immunity and salinity adaptation of L. maculatus.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    6
    Citations
    NaN
    KQI
    []