Propeller-Shaped Acceptors for High-Performance Non-Fullerene Solar Cells: Importance of the Rigidity of Molecular Geometry

2017 
This paper describes the synthesis and application of βTPB6 and βTPB6-C as electron acceptors for organic solar cells. Compound βTPB6 contains four covalently bonded PDIs with a BDT-Th core at the β-position. The free rotation of PDIs renders βTPB6 with varying molecular geometries. The cyclization of βTPB6 yields βTPB6-C with high rigidity of the molecular geometry and enlarged conjugated skeleton. The inverted solar cells based on βTPB6-C and PTB7-Th as the donor polymer exhibited the highest efficiency of 7.69% with Voc of 0.92 V, Jsc of 14.9 mAcm–2, and FF of 0.56, which is 31% higher than that for βTPB6 based devices. The larger fraction of βTPB6-C and PTB7-Th than that of βTPB6:PTB7-Th in a blend film takes a face-on orientation packing pattern for π-systems that benefits the charge transport and hence higher PCE value than that for βTPB6:PTB7-Th. It was also found that a proper DIO:DPE additive further enhances this trend, which results in an increase of the PCE value for βTPB6-C:PTB7-Th while decr...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    73
    Citations
    NaN
    KQI
    []