An Empirical Study on GAN-Based Traffic Congestion Attack Analysis: A Visualized Method

2020 
With the development of emerging intelligent traffic signal (I-SIG) system, congestion-involved security issues are drawing attentions of researchers and developers on the vulnerability introduced by connected vehicle technology, which empowers vehicles to communicate with the surrounding environment such as road-side infrastructure and traffic control units. A congestion attack to the controlled optimization of phases algorithm (COP) of I-SIG is recently revealed. Unfortunately, such analysis still lacks a timely visualized prediction on later congestion when launching an initial attack. In this paper, we argue that traffic image feature-based learning has available knowledge to reflect the relation between attack and caused congestion and propose a novel analysis framework based on cycle generative adversarial network (CycleGAN). Based on phase order, we first extract four-direction road images of one intersection and perform phase-based composition for generating new sample image of training. We then design a weighted L1 regularization loss that considers both last-vehicle attack and first-vehicle attack, to improve the training of CycleGAN with two generators and two discriminators. Experiments on simulated traffic flow data from VISSIM platform show the effectiveness of our approach.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []