Analysis of stress distribution in lingual orthodontics system for effective en-masse retraction using various combinations of lever arm and mini-implants: A finite element method study.

2020 
Introduction The aims and objectives of this study were to evaluate the von Mises stress and principal stress distribution and displacement of anterior teeth in a lingual orthodontics system along the periodontal ligament and alveolar bone by various combinations of mini-implants and lever arm during en-masse retraction. Four 3-dimensional finite element (FE) models of the bilateral maxillary first premolar extraction cases were constructed. Methods Lingual brackets were (0.018-in slots) positioned over the center of the clinical crown. In all 4 models, 150 g of retraction force was applied with the help of a nickel-titanium closed coil spring with different combinations of mini-implants and lever arm on each side. FE analysis was then performed to evaluate stress distribution, principal stress, von Mises stress, and displacement of the anterior teeth using ANSYS software (version 12.1; Ansys, Canonsburg, Pa). The FE study was enough to validate the analysis results obtained by software tools with FE simulation instead of experimental readings. Thus, statistical analysis was not required. Results In this study, maximum tensile stresses were observed in the periodontal ligament at the mesial cervical region of the canine with values of 1.84 MPa, 2.02 MPa, 1.88 MPa, and 2.08 MPa for models 1-4, respectively. Maximum von Mises stress in alveolar bone was 8.05 MPa, 8.23 MPa, 8.19 MPa, and 8.37 MPa for models 1-4, respectively, which was within the optimum limit (135 MPa). Variable amounts of displacements like lingual crown tipping, lingual root tipping, and extrusion were observed in all the models. The 15-mm long lever arm models (models 2 and 4) showed a more controlled crown (0.015 mm) and root movement (0.004 mm) compared with 12-mm long lever arm models (models 1 and 3). Conclusions In lingual orthodontics, controlled root movement increased as we increased the length of the lever arm. It was also concluded that the amount of increased controlled tipping found with the placement of the mini-implant was toward the palatal slope.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    2
    Citations
    NaN
    KQI
    []