A static beam delivery device for fast scanning proton arc-therapy.

2021 
Arc-therapy is a dose delivery technique regularly applied in photon radiation therapy, and is currently subject of great interest for proton therapy as well. In this technique, proton beams are aimed at a tumor from different continuous ranges of incident directions (so called "arcs"). This technique can potentially yield a better dose conformity around the tumor and a very low dose in the surrounding healthy tissue. Currently, proton-arc therapy is performed by rotating a proton gantry around the patient, adapting the normally used dose-delivery method to the arc-specific motion of the gantry. Here we present first results from a feasibility study of the conceptual design of a new static fast beam delivery device/system for proton-arc therapy, which could be used instead of a gantry. In this novel concept, the incident angle of proton beams can be set rapidly by only changing field strengths of small magnets. This device eliminates the motion of the heavy gantry and related hardware. Therefore, a reduction of the total treatment time is expected. In the feasibility study presented here, we concentrate on the concept of the beam transport. Based on several simple, but realistic assumptions and approximations, proton tracking calculations were performed in a 3D magnetic field map, to calculate the beam transport in this device and to investigate and address several beam-optics challenges. We propose and simulate corresponding solutions and discuss their outcomes. To enable the implementation of some usually applied techniques in proton therapy, such as pencil beam scanning, energy modulation and beam shaping, we present and discuss our proposals. Here we present the concept of a new idea to perform fast proton arc-scanning and we report on first results of a feasibility study. Based on these results, we propose several options and next steps in the design.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    1
    Citations
    NaN
    KQI
    []