Probiotics-fermented blueberry juices as potential antidiabetic product: antioxidant, antimicrobial and antidiabetic potentials.

2021 
BACKGROUND Fermentation is a traditional food-preserving technique. It is an effective process, widely used to enrich the nutrients diversity and bioactivity of the fermented foods since ancient times. This study aimed at investigating the effects of various fermentation starters on the physicochemical, antioxidant, antimicrobial, and antidiabetic properties of blueberry juices. The blueberry juices were fermented by natural fermentation (NFBJ), self-made starters fermentation (SFBJ), and commercial starters fermentation (CFBJ); fresh blueberry juice (BBJ) was processed without fermentation for comparison. RESULTS Probiotics-fermented blueberry juices (SFBJ and CFBJ) showed less total and reducing sugars, higher titratable acidity, and a wider variety and higher amounts of organic acids than non-fermented blueberry juice (BBJ) did. All the fermented blueberry juices (NFBJ, SFBJ, and CFBJ) showed significantly (P < 0.05) higher antioxidant potentials than that of BBJ measured by 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid, cupric-reducing antioxidant capacity, and ferric-reducing ability power assays. The SFBJ exhibited the highest antibacterial activities against Escherichia coli, Staphylococcus aureus, and Salmonella Typhimurium, with inhibition zone diameters of 38.84 ± 1.74 mm, 34.91 ± 1.53 mm, and 36.18 ± 3.16 mm respectively. Compared with BBJ, the α-glucosidase inhibitory activity of the SFBJ and CFBJ increased by two-to threefold. The α-amylase inhibitory activity of the SFBJ and CFBJ increased by 600%, whereas the spontaneous fermentation showed no improvement. The SFBJ and CFBJ promoted glucose consumption of HepG2 cell lines, indicating the promising potential for a higher glucose bio-utilization. CONCLUSIONS The SFBJ and CFBJ showed remarkable improvements in the antioxidant, antimicrobial, and antidiabetic activities compared with non-fermented and spontaneous fermented juices, indicating their promising potentials as an antihyperglycemic agent. © 2021 Society of Chemical Industry.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    1
    Citations
    NaN
    KQI
    []