Thermal and mechanical activation of dynamically stable ionic interaction toward self-healing strengthening elastomers

2021 
Biological tissues can grow stronger after damage and self-healing. However, artificial self-healing materials usually show decreased mechanical properties after repairing. Here, we develop a self-healing strengthening elastomer (SSE) by engineering kinetic stability in an ionomer. Such kinetic stability is enabled by designing large steric hindrance on the cationic groups, which prevents the structural change driven by thermodynamic instability under room temperature. However, once heat or external force is applied to disrupt the kinetic stability, the inherent thermodynamic instability induces the SSEs to form bigger and denser aggregates, thereby the material becomes stronger during the healing process. Consequently, the self-healing efficiency of fractured SSEs is as high as 143%. Unlike conventional ionomers whose mechanical properties change with time uncontrollably due to the thermodynamic instability, the SSEs show tunable self-healing strengthening behavior, thanks to the kinetic stability. This work provides a novel and universal strategy to fabricate biomimetic self-healing strengthening materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    1
    Citations
    NaN
    KQI
    []