Salvianolic acid B suppresses EMT and apoptosis to lessen drug resistance through AKT/mTOR in gastric cancer cells

2020 
The drug resistance of tumor cells greatly reduces the efficacy of chemotherapy drugs in gastric cancer. Salvianolic acid B (Sal-B) is considered as a chemopreventive agent which suppresses oxidative stress and apoptosis. Therefore, the study aims to clarify the mechanism of Sal-B in drug-resistant gastric cancer cells. CCK8 assay analyzed cell viabilities after GES1, AGS and AGS/DDP cells were respectively treated by Sal-B of different concentration or after AGS/DDP cells were disposed by cisplatin (DDP) in different concentration. The colony formation, ROS generation, apoptosis, migration, invasion and EMT marker proteins were respectively analyzed through formation assay, ROS kits, TUNNEL staining, Wound healing, Transwell assays and Western blot. The results demonstrated that Sal-B acted alone or in synergy with DDP to reduce cell viabilities, initiate ROS generation, promote cell apoptosis, as well as decrease migration, invasion and EMT in AGS and AGS/DDP cells. AKT activator and mTOR activator significantly reversed the above effects of Sal-B. Collectively, Sal-B regulated proliferation, EMT and apoptosis to reduce the resistance to DDP via AKT/mTOR pathway in DDP-resistant gastric cancer cells. Sal-B could be a potential anti-drug resistance agent to chemotherapy in gastric cancer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    2
    Citations
    NaN
    KQI
    []