Synthesis and characterization of sol-gel silica films doped with size-selected gold nanoparticles.

2008 
Homogeneous nanocomposite silica films uniformly doped with size-selected gold nanoparticles (AuNPs) have been prepared by a combined use of colloidal chemistry and the sol‐gel process. For this purpose, stable thiol-functionalized AuNPs (DDT-AuNPs) were first synthesized by a two-phase aqueous/organic system and, subsequently, dispersed in an acid-catalysed sol‐gel silica solution. The microstructural morphology of the samples was investigated by x-ray diffraction and field emission scanning electron microscopy. X-ray photoelectron spectroscopy (XPS) and UV‐vis optical spectrophotometry were instead employed to investigate the elemental chemical behaviour and the evolution of the surface plasmon resonance (SPR) band of the AuNPs from their synthesis up to the formation of the Au-doped silica films. The results show that the size, shape and crystalline domains of the AuNPs remain unchanged during the entire preparation process, indicating that their aggregation or decomposition was prevented. XPS results show that the DDT-AuNPs lose the capping shells and oxidize themselves when dispersed in acid-catalysed sol‐gel solutions, and that bare AuNPs are embedded in the SiO2 films. A large broadening of the SPR band, observed for systems with DDT-AuNPs, suggests the presence of interface effects which cause a surface electron density lowering. Thiol chain detachment from the AuNPs determines an increase of the SPR peak intensity while the oxidation of the Au surfaces causes a red shift of its position. The latter is no longer observed in doped films, suggesting that no interfacial effects between bare AuNPs and the host medium are present. (Some figures in this article are in colour only in the electronic version)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    39
    Citations
    NaN
    KQI
    []