Reliability Modeling of NISQ- Era Quantum Computers

2020 
Recent developments in quantum computers have been pushing up the number of qubits. However, the state-of-the-art Noisy Intermediate Scale Quantum (NISQ) computers still do not have enough qubits to accommodate the error correction circuit. Noise in quantum gates limits the reliability of quantum circuits. To characterize the noise effects, prior methods such as process tomography, gateset tomography and randomized benchmarking have been proposed. However, the challenge is that these methods do not scale well with the number of qubits. Noise models based on the understanding of underneath physics have also been proposed to study different kinds of noise in quantum computers. The difficulty is that there is no widely accepted noise model that incorporates all different kinds of errors. The realworld errors can be very complicated and it remains an active area of research to produce accurate noise models. In this paper, instead of using noise models to estimate the reliability, which is measured with success rates or inference strength, we treat the NISQ quantum computer as a black box. We use several quantum circuit characteristics such as the number of qubits, circuit depth, the number of CNOT gates, and the connection topology of the quantum computer as inputs to the black box and derive a reliability estimation model using (1) polynomial fitting and (2) a shallow neural network. We propose randomized benchmarks with random numbers of qubits and basic gates to generate a large data set for neural network training. We show that the estimated reliability from our black-box model outperforms the noise models from Qiskit. We also showcase that our black-box model can be used to guide quantum circuit optimization at compile time.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    7
    Citations
    NaN
    KQI
    []