Iron and zinc concentrations in peanut ( Arachis hypogaea L.) seeds and their relationship with other nutritional and yield parameters

2015 
Biofortification (delivery of micronutrients via micronutrient-dense crops) can be achieved through plant breeding and offers a cost-effective and sustainable approach to fighting micronutrient malnutrition. The present study was conducted to facilitate the initiation of a breeding programme to improve the concentration of iron (Fe) and zinc (Zn) in peanut (Arachis hypogaea L.) seeds. The experiment was conducted with 64 diverse peanut genotypes for 2 years in eight different environments at the International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India to assess the genetic variation for Fe and Zn concentrations in peanut seeds and their heritability and correlations with other traits. Significant differences were observed among the genotypes and environments for Fe (33–68 mg/kg), Zn (44–95 mg/kg), protein (150–310 mg/g) and oil (410–610 mg/g) concentration in seeds and their heritability was high, thus indicating the possibility of improving them through breeding. As seen in other plants, a significant positive association between concentrations of Fe and Zn was observed. Trade-offs between pod yield and Fe and Zn concentrations were not observed and the same was also true for oil content. Besides being high yielding, genotypes ICGV 06099 (57 mg/kg Fe and 81 mg/kg Zn) and ICGV 06040 (56 mg/kg Fe and 80 mg/kg Zn) had stable performance for Fe and Zn concentrations across environments. These are the ideal choices for use as parents in a breeding programme and in developing mapping populations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    12
    Citations
    NaN
    KQI
    []