Implementation of a Geometrically Informed and Energetically Constrained Mesoscale Eddy Parameterization in an Ocean Circulation Model

2018 
AbstractThe global stratification and circulation, as well as their sensitivities to changes in forcing, depend crucially on the representation of the mesoscale eddy field in a numerical ocean circulation model. Here, a geometrically informed and energetically constrained parameterization framework for mesoscale eddies—termed Geometry and Energetics of Ocean Mesoscale Eddies and Their Rectified Impact on Climate (GEOMETRIC)—is proposed and implemented in three-dimensional channel and sector models. The GEOMETRIC framework closes eddy buoyancy fluxes according to the standard Gent–McWilliams scheme but with the eddy transfer coefficient constrained by the depth-integrated eddy energy field, provided through a prognostic eddy energy budget evolving with the mean state. It is found that coarse-resolution models employing GEOMETRIC display broad agreement in the sensitivity of the circumpolar transport, meridional overturning circulation, and depth-integrated eddy energy pattern to surface wind stress as comp...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    14
    Citations
    NaN
    KQI
    []