Tomato fruit susceptibility to fungal disease can be uncoupled from ripening by suppressing susceptibility factors

2020 
The increased susceptibility of ripe fruit to fungal pathogens poses a substantial threat to crop production and marketability. Here, we coupled transcriptomic analyses with mutant studies to uncover critical processes associated with defenses and susceptibility in tomato (Solanum lycopersicum) fruit. Using unripe and ripe fruit inoculated with three fungal pathogens, we identified common pathogen responses reliant on chitinases, WRKY transcription factors, and reactive oxygen species detoxification. We established that the magnitude and diversity of defense responses do not significantly impact the interaction outcome, as susceptible ripe fruit mounted a strong defense response to pathogen infection. Then, to distinguish features of ripening that may be responsible for susceptibility, we utilized non-ripening tomato mutants that displayed different susceptibility patterns to fungal infection. Based on transcriptional and hormone profiling, susceptible tomato genotypes had losses in the maintenance of cellular redox homeostasis, while jasmonic acid accumulation and signaling coincided with defense activation in resistant fruit. We identified and validated a susceptibility factor, pectate lyase (PL). CRISPR-based knockouts of PL, but not polygalacturonase (PG2a), reduced susceptibility of ripe fruit by >50%. This study suggests that targeting specific genes that drive susceptibility is a viable strategy to improve the resistance of tomato fruit against fungal disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    88
    References
    3
    Citations
    NaN
    KQI
    []