Cysteamine mitigates torsion/detorsion-induced reperfusion injury via inhibition of apoptosis, oxidative stress and inflammatory responses in experimental rat model

2021 
Oxidative stress, inflammation and apoptosis are major pathways in pathophysiology of testicular torsion/detorsion (TTDT) reperfusion injury. This study evaluated the antioxidant, anti-inflammatory and anti-apoptotic role of cysteamine in TTDT-induced injury. Male Wistar rats (n = 32) were grouped into four (n = 8): sham, ischaemia-reperfusion injury (IRI), cysteamine (100 mg/kg and 200 mg/kg) for in vivo study. Samples were taken for biomolecular and histological evaluation 48 hr after detorsion. Tissue SOD, GPx, GSH, GST activity, total thiol, H2 O2 and MDA were assessed. Serum levels of NO, MPO, TNF-alpha and IL-6 and sperm motility, count and viability were assessed. Caspase-3 and bax were evaluated by immunohistochemistry. Significant difference was set as p < .05. Significant increase in H2 O2, MDA and nitrite but reduction in SOD, GPx, GSH, GST and total thiol in the testicular tissue of IRI rats was reversed by cysteamine. Serum MPO and TNF-α were significantly elevated in RI, while treated-RI rats showed decrease (p < .05) in tissue level of the inflammation markers. Reduced sperm motility in RI was significantly reversed by cysteamine. Increased tissue expression of bax and caspase-3 was reversed by cysteamine. Cysteamine protected the testis against reperfusion injury through anti-inflammatory, antioxidant effects and inhibition of apoptosis in rats.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    0
    Citations
    NaN
    KQI
    []