Gene-engineered exosomes-thermosensitive liposomes hybrid nanovesicles by the blockade of CD47 signal for combined photothermal therapy and cancer immunotherapy.

2021 
CD47, overexpressed on kinds of tumor cells, activates a "don't eat me" signal through binding to signal regulatory protein α (SIRPα), leading to immune escape from the mononuclear phagocyte system (MPS). It is also a huge challenge to deliver therapeutic drugs to the tumor sites due to the short retention time in blood, poor targeting of tumor cells and accelerated clearance by MPS. Herein, we designed a hybrid therapeutic nanovesicles, named as hGLV, by fusing gene-engineered exosomes with drug-loaded thermosensitive liposomes. We demonstrated that the CD47-overexpressed hGLV exhibited the long blood circulation and improved the macrophages-mediated the phagocytosis of tumor cells by blocking CD47 signal. Moreover, the resulted hGLV could remarkably target the homologous tumor in mice, achieving the preferential accumulation at the tumor sites. Importantly, hGLV loading the photothermal agent could achieve the excellent photothermal therapy (PTT) under laser irradiation after the intravenous injection, completely eliminating the tumors, leading to immunogenic cell death and generating substantial tumor-associated antigens, which could promote the maturation of immature dendritic cells with the help of the co-encapsulated immune adjuvant to trigger strong immune responses. Generally, the hybrid nanovesicles based on CD47 immune check point blockade can be a promising platform for the drug delivery in cancer treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    5
    Citations
    NaN
    KQI
    []