Environmental and morphological constraints interact to drive the evolution of communication signals in frogs

2020 
Animals show a rich diversity of signals and displays. Among the many selective forces driving the evolution of communication between individuals, one widely recognized factor is the structure of the environment in which signals are produced, transmitted and received. In particular, animals communicating by sounds often emit acoustic signals from specific locations, such as high up in the air, from the ground or in the water. The properties of these different display sites will impose different constraints on sound production and transmission and may therefore drive signal evolution. Here, we used comparative phylogenetic analyses to assess the relationship between the display site properties and the structure of reproductive calls from 161 frog species from the frog families Ranidae, Leptodactylidae and Hylidae. Specifically, we compared the dominant frequency of species that vocalize from aquatic versus non-aquatic sites, and its relation with body size. We found that the dominant frequency of frogs calling from the water was lower than that of species calling outside of the water, a trend that was consistent across the three families studied. Furthermore, phylogenetic path analysis revealed that the call site had both direct and indirect effects on the dominant frequency. Indirect effects were mediated by call site influencing male body size, which in turn was negatively associated to call dominant frequency. Our results suggest that properties of display sites can drive signal evolution, most likely through morphological constraints, in particular the ones imposed on the sound production mechanism. Also, variation in body size between calling sites explained some of the differences we found in call frequency, highlighting the relevance of the interplay between morphological adaptation and signal evolution. Changes of display site may therefore have important evolutionary consequences, as it may influence sexual selection processes and ultimately may even promote speciation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []