Adaptability and Stability Comparisons of Inbred and Hybrid Cotton in Yield and Fiber Quality Traits

2019 
Cotton (Gossypium hirsutum L.) is the most important fiber crop worldwide. Characterizing genotype by environment interaction (GEI) is helpful to identify stable genotypes across diverse environments. This study was conducted in six environments to compare the performance and stability of 11 inbred lines and 30 intraspecific hybrids of cotton. Analysis of variance using the additive main effects and multiplicative interaction model revealed that genotype (G), environment (E), and GEI had highly significant effects on yield and fiber quality traits. Mean comparisons among genotypes showed that most hybrids had higher means for yield and fiber quality traits than inbred genotypes. Additionally, a larger portion of the total variability in yield traits was explained by E than G and GEI. However, G and GEI combined contributed more to the total variance in fiber traits than E. The first three interaction principal components explained the majority of GEI in all traits under study. For most traits, the environments were not clustered together, implying contrasting interaction with genotypes. Stability measurements indicated that most hybrids showed more stable performance than inbred lines for all traits. The hybrids SJ48-1 × Z98-15 and L28-2 × A2-10 displayed both better performance and stability in yield and fiber quality traits. Our results show the importance of hybridization for improving cotton yield and fiber quality in a wide range of environments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    7
    Citations
    NaN
    KQI
    []