Organic photovoltaics with 300 nm thick ternary active layers exhibiting 15.6% efficiency

2021 
Over 200 nm thickness of active layers are essential for achieving efficient organic photovolatics (OPVs) using the roll-to-roll (R2R) large-scale production technology. In this study, a series of OPVs with 300 nm thick active layers were prepared with PM6:BTP-4F-12:BP-4F as active layers. The PM6:BTP-4F-12- and PM6:BP-4F-based binary OPVs achieve power conversion efficiencies (PCE) of 14.62% and 14.14%, respectively, with 300 nm thick active layers, also exhibiting complementary photovoltaic parameters. A PCE of 15.63% is achieved by the optimized ternary thick-film OPVs by combining the superiorities of two binary thick-film OPVs, deriving from a short circuit current density (JSC) of 26.57 mA cm−2, an open circuit voltage (VOC) of 0.840 V and a fill factor (FF) of 70.03%. The performance improvement of ternary thick-film OPVs should be mainly ascribed to the optimized molecular arrangement and phase separation for efficient charge transport in ternary thick active layers, which can be confirmed from the significantly improved FFs of ternary thick-film OPVs. This study indicates that the ternary strategy has great potential in preparing efficient thick-film OPVs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    19
    Citations
    NaN
    KQI
    []