Serum and Glucocorticoid-Regulated Kinase 1 Promotes Vascular Smooth Muscle Cell Proliferation via Regulation of β-catenin Dynamics

2014 
Abstract In response to arterial intimal injury vascular smooth muscle cells (VSMCs) within the vessel wall proliferate upon exposure to growth factors, accumulate, and form a neointima that can occlude the vessel lumen. Serum and glucocorticoid inducible kinase 1 (SGK1) is a growth factor-responsive kinase; however its role in VSMC proliferation is not fully understood. Here, we examined growth factor-dependent regulation of SGK1 and defined a molecular role for SGK1 in stimulation of VSMC proliferation. We found that stimulation of VSMCs with the pro-proliferative growth factor, platelet-derived growth factor BB (PDGF) significantly increased SGK1 mRNA, protein, and kinase activity in aortic VSMCs in vitro . To test the hypothesis that activation of SGK1 activity promotes VSMC proliferation, we examined the effects of stable expression of constitutively active (S422D) and kinase-defective (S422A) mutants of SGK1 on VSMC growth. We found that activation of SGK1 increased, whereas interference of SGK1 signaling inhibited VSMC growth in vitro . Consistent with these findings, expression of the S422D mutant augmented both basal and PDGF-induced BrdU uptake in VSMCs. Conversely, PDGF-induced BrdU uptake was attenuated in VSMCs expressing S422A. Furthermore, we determined that activated SGK1 enhanced basal and PDGF-dependent G 1  → S cell cycle transition, whereas dominant-negative SGK1 abrogated G 1  → S cell cycle transition under similar conditions. Downstream signaling by active SGK1 induced basal and PDGF-induced phosphorylation of glycogen synthase kinase 3β, an effect which was attenuated when SGK1 activity was blocked by expression of the kinase-defective mutant, S422A. We also found that transfection of S422D enhanced β-catenin-nuclear localization and activation of the TOP/Flash and cyclin D1 transcriptional reporters. These effects were significantly blunted in VSMCs transfected with the S422A mutant. Our results provide compelling evidence of a role for SGK1 in stimulation of arterial VSMC growth via regulation of β-catenin dynamics and implicate SGK1 in the progression of intimal narrowing following arterial injury. Hence, the findings presented here point to inhibition of SGK1 activity as a novel therapeutic approach for the treatment of occlusive vascular diseases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    12
    Citations
    NaN
    KQI
    []