Ring-Opening-Induced Toughening of a Low-Permittivity Polymer−Metal Interface

2010 
Integrating low dielectric permittivity (low-k) polymers to metals is an exacting fundamental challenge because poor bonding between low-polarizability moieties and metals precludes good interfacial adhesion. Conventional adhesion-enhancing methods such as using intermediary layers are unsuitable for engineering polymer/metal interfaces for many applications because of the collateral increase in dielectric permittivity. Here, we demonstrate a completely new approach without surface treatments or intermediary layers to obtain an excellent interfacial fracture toughness of >13 J/m2 in a model system comprising copper and a cross-linked polycarbosilane with k ∼ 2.7 obtained by curing a cyclolinear polycarbosilane in air. Our results suggest that interfacial oxygen catalyzed molecular ring-opening and anchoring of the opened ring moieties of the polymer to copper is the main toughening mechanism. This novel approach of realizing adherent low-k polymer/metal structures without intermediary layers by activating...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    9
    Citations
    NaN
    KQI
    []