Penehyclidine hydrochloride regulates mitochondrial dynamics and apoptosis through p38MAPK and JNK signal pathways and provides cardioprotection in rats with myocardial ischemia–reperfusion injury

2018 
Abstract Aim The potential mechanism of penehyclidine hydrochloride (PHC) against myocardial ischemia–reperfusion (I/R) injury has not been fully elucidated. The aim of the present study was to reveal whether mitochondrial dynamics, apoptosis, and MAPKs were involved in the cardioprotective effect of this drug on myocardial I/R injury. Methods Ninety healthy adult male Wistar rats were separately pretreated with normal saline (0.9%); PHC; and signal pathway blockers of MAPKs, Drp1, and Bcl-2. Coronary artery ligation and subsequent reperfusion were performed to induce myocardial I/R injury. Echocardiography was performed. Myocardial enzymes and oxidative stress markers were detected. Myocardial cell apoptotic rates and infarct sizes were measured. Mitochondrial function was evaluated. Expression levels of MAPKs, mitochondria regulatory proteins (Drp1, Mfn1/2), and apoptosis-related proteins (Bcl-2, Bax) were determined. Results PHC pretreatment improved myocardial abnormalities (dysfunction, injury, infarct size, and apoptotic rate), mitochondrial abnormalities (dysfunction and fission), and excessive oxidative stress and inhibited the activities of p38MAPK and JNK signal pathways in rats with myocardial I/R injury (P   0.05). In addition, Bcl-2 blocker (ABT-737) caused a high expression of Drp1 and a low expression of Mfn1/2 (P  Conclusion PHC regulated mitochondrial dynamics and apoptosis through p38MAPK and JNK signal pathways and provided cardioprotection in rats with myocardial I/R injury.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    12
    Citations
    NaN
    KQI
    []