Multiscale vapor-mediated dendritic pattern formation and bacterial aggregation in complex respiratory biofluid droplets

2021 
Abstract Hypothesis: Deposits of biofluid droplets on surfaces (such as respiratory droplets formed during an expiratory) are composed of water-based salt-protein solution that may also contain an infection (bacterial/viral). The final patterns of the deposit formed and bacterial aggregation on the deposits are dictated by the fluid composition and flow dynamics within the droplet. Experiments: This work reports the spatio-temporal, topological regulation of deposits of respiratory fluid droplets and control of bacterial aggregation by tweaking flow inside droplets using non-contact vapor-mediated interactions. Desiccated respiratory droplets form deposits with haphazard multiscale dendritic, cruciform-shaped precipitates when evaporated on a glass substrate. However, we showcase that short and long-range vapor-mediated interaction between the droplets can be used as a tool to control these deposits at nano-micro-millimeter scales. We morphologically control hierarchial dendrite size, orientation and subsequently suppress cruciform-shaped crystals by placing a droplet of ethanol in the vicinity of the biofluid droplet. Active living matter in respiratory fluids like bacteria is preferentially segregated and agglomerated without its viability and pathogenesis attenuation. Findings: The nucleation sites can be controlled via preferential transfer of solutes in the droplets; thus, achieving control over crystal occurrence, growth dynamics, and the final topology of the deposit. For the first time, we have experimentally presented a proof-of-concept to control the aggregation of live active matter like bacteria without any direct contact. The methodology can have ramifications in biomedical applications like disease detection and bacterial segregation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    0
    Citations
    NaN
    KQI
    []