Enhanced Fenton-like removal of nitrobenzene via internal microelectrolysis in nano zerovalent iron/activated carbon composite.

2016 
The efficiency of Fenton-like catalysis using nano zerovalent iron (nZVI) is limited by nZVI aggregation and activity loss due to inactive ferric oxide forming on the nZVI surface, which hinders electron transfer. A novel iron–carbon composite catalyst consisting of nZVI and granular activated carbon (GAC), which can undergo internal iron–carbon microelectrolysis spontaneously, was successfully fabricated by the adsorption–reduction method. The catalyst efficiency was evaluated in nitrobenzene (NB) removal via the Fenton-like process (H2O2-nZVI/GAC). The results showed that nZVI/GAC composite was good for dispersing nZVI on the surface of GAC, which permitted much better removal efficiency (93.0%) than nZVI (31.0%) or GAC (20.0%) alone. Moreover, iron leaching decreased from 1.28 to 0.58 mg/L after reaction of 240 min and the oxidation kinetic of the Fenton-like reaction can be described well by the second-order reaction kinetic model ( R 2 = 0.988). The composite catalyst showed sustainable catalytic ability and GAC performed as a medium for electron transfer in internal iron–carbon microelectrolysis to promote Fe2+ regeneration and Fe3+/Fe2+ cycles. Therefore, this study represents an important method to design a low cost and high efficiency Fenton-like catalyst in practical application.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    11
    Citations
    NaN
    KQI
    []