Catanionic Hybrid Lipid for Improved and Efficacy of Chemotherapeutic Drugs

2021 
Catanionic nanovesicles are attractive as a novel class of delivery vehicle because they can increase the stability, adsorption, and cellular uptake of a broad range of drugs. These hybrid lipid nanocarriers consist of solid and liquid lipids, which are biocompatible and biodegradable. Since liquid lipid is added to the nanocarrier, the lipids are present in a crystalline defect or amorphous structure state. As a result, hybrid lipid nanocarriers have a higher drug loading capability and suffer less drug leakage during preparation and storage compared to the pure lipid nanocarriers. Catanionic nanovesicles have been shown to increase stability, adsorption, cellular uptake, apoptosis induction, tumor cell cytotoxicity, and antitumorigenic effect, making it a highly desirable vehicle for drug delivery. For example, the anticancer compound curcumin (CC) have shown great promise to cure cancers such as lung cancer, breast cancer, stomach cancer, and colon cancer. However, like many potential antitumor drugs, CC on its own has poor water solubility, easy photodegradation, chemical instability, low bioavailability, rapid metabolism, and fast systematic clearance, which severely limits its clinical applications. In this chapter, we demonstrate the use of catanionic nanovesicles to improve the bioavailability and efficacy of CC for anticancer applications. This technique can be easily adapted for delivery and evaluation of other bioactive compounds.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    1
    Citations
    NaN
    KQI
    []