Effects of ROS-relative NF-κB signaling on high glucose-induced TLR4 and MCP-1 expression in podocyte injury

2015 
High glucose (HG) induced inflammation is central to progression in diabetic nephropathy (DN). Recent studies have suggested that nuclear factor-kappa B (NF-κB) signaling activation is associated with DN, and podocyte damage may be involved in orchestrating these effects. Therefore, the aim of this study was to investigate the effects of NF-κB signaling on podocytes under HG conditions. The effects of HG and NF-κB signaling on podocytes were assessed by CCK-8 assay, cellular NF-κB translocation assay, measurement of reactive oxygen species (ROS) and Western blot analysis. We found that HG reduced cell viability, activated NF-κB signaling and up-regulated toll-like receptor 4 (TLR4) and monocyte chemoattractant protein-1 (MCP-1). In these cells, NF-κB inhibition with ammonium pyrrolidinethiocarbamate (PDTC) resulted in effectively constraining TLR4 and MCP-1 up-regulation, indicating that protective effects associated with the inhibition of NF-κB were linked to TLR4 and MCP-1 down-regulation in podocytes. Furthermore, HG significantly increased the production of intracellular ROS. Pretreatment with N-acetyl-l-cysteine (NAC) significantly inhibited intracellular ROS generation and increased cell viability, accompanied by a significant NF-κB inhibition and suppression of TLR4 and inflammatory cytokine MCP-1 expression. Collectively, our novel data suggest that HG induces the over-experssion of TLR-4 and MCP-1 through a NF-κB-dependent signaling. NF-κB-mediated increased inflammation is possibly via ROS and contributes to the cell injury. These results may provide potential therapeutic target for diabetic nephropathy in the future.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    44
    Citations
    NaN
    KQI
    []