Waveguide photoreactor enhances solar fuels photon utilization towards maximal optoelectronic - photocatalytic synergy.

2021 
A conventional light management approach on a photo-catalyst is to concentrate photo-intensity to enhance the catalytic rate. We present a counter-intuitive approach where light intensity is distributed below the electronic photo-saturation limit under the principle of light maximization. By operating below the saturation point of the photo-intensity induced hydroxide growth under reactant gaseous H2+CO2 atmosphere, a coating of defect engineered In2O3-x(OH)y nanorod Reverse Water Gas Shift solar-fuel catalyst on an optical waveguide outperforms a coated plane by a factor of 2.2. Further, light distribution along the length of the waveguide increases optical pathlengths of the weakly absorptive green and yellow wavelengths, which increases CO product rate by a factor of 8.1-8.7 in the visible. Synergistically pairing with thinly doped silicon on the waveguide enhances the CO production rate by 27% over the visible. In addition, the persistent photoconductivity behavior of the In2O3-x(OH)y system enables CO production at a comparable rate for 2 h after turning off photo-illumination, enhancing yield with 44-62% over thermal only yield. The practical utility of persistent photocatalysis was demonstrated through outdoor solar concentrator tests, which after a day-and-night cycle showed CO yield increase of 19% over a day-light only period. Concentrating photo-intensities on photocatalyst has diminishing returns. Here the authors show the catalyst on glass rod waveguide at optimal low intensity results in high efficiency in the gas phase reverse water gas shift reaction in an annular glass cylindrical rod photoreactor.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    3
    Citations
    NaN
    KQI
    []