Magnetic fields and differential rotation on the pre-main sequence III: The early-G star HD 106506

2011 
We present photometry and spectropolarimetry of the pre-main sequence star HD 106506. A photometric rotational period of ~1.416 +/- 0.133 days has been derived using observations at Mount Kent Observatory (MKO). Spectropolarimetric data taken at the 3.9-m Anglo-Australian Telescope (AAT) were used to derive spot occupancy and magnetic maps of the star through the technique of Zeeman Doppler imaging (ZDI). The resulting brightness maps indicate that HD 106506 displays photospheric spots at all latitudes including a predominant polar spot. Azimuthal and radial magnetic images of this star have been derived, and a significant azimuthal magnetic field is indicated, in line with other active young stars. A solar-like differential rotation law was incorporated into the imaging process. Using Stokes I information the equatorial rotation rate, $\Omega_{eq}$, was found to be 4.54 +/- 0.01 rad/d, with a photospheric shear $\delta\Omega$ of $0.21_{-0.03}^{+0.02}$ rad/d. This equates to an equatorial rotation period of ~1.39 +/- 0.01 days, with the equatorial region lapping the poles every ~$30_{-3}^{+5}$ days. Using the magnetic features, the equatorial rotation rate, $\Omega_{eq}$, was found to be 4.51 +/- 0.01 rad/d, with a photospheric shear $\delta\Omega$ of 0.24 +/- 0.03 rad/d. This differential rotation is approximately 4 times that observed on the Sun.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    0
    Citations
    NaN
    KQI
    []