Fundamental processes of exciton scattering at organic solar-cell interfaces: One-dimensional model calculation

2016 
Fundamental processes of exciton scattering at organic solar-cell interfaces were studied using a one-dimensional tight-binding model and by performing a time-evolution simulation of electron–hole pair wave packets. We found the fundamental features of exciton scattering: the scattering promotes not only the dissociation of excitons and the generation of interface-bound (charge-transferred) excitons but also the transmission and reflection of excitons depending on the electron and hole interface offsets. In particular, the dissociation increases in a certain region of an interface offset, while the transmission shows resonances with higher-energy bound-exciton and interface bound-exciton states. We also studied the effects of carrier-transfer and potential modulations at the interface and the scattering of charged excitons, and we found trap dissociations where one of the carriers is trapped around the interface after the dissociation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    2
    Citations
    NaN
    KQI
    []