Electroresistance in metal/ferroelectric/semiconductor tunnel junctions based on a Hf0.5Zr0.5O2 barrier

2021 
Ferroelectric Hf0.5Zr0.5O2 films, 5.8 nm in thickness, were deposited on Nb:SrTiO3 semiconductor substrates to form a Pt/Hf0.5Zr0.5O2/Nb:SrTiO3 metal/ferroelectric/semiconductor ferroelectric tunnel junction (FTJ). A high tunneling electroresistance ratio of 800 was achieved at room-temperature. It is observed that in the low resistance state, the transport characteristic obeys direct tunneling, while in the high resistance state, it is dominated by thermal emission. It implies that the Schottky barrier on the surface of the semiconductive electrode is modulated by the polarization in the ferroelectric Hf0.5Zr0.5O2 barrier, generating the high electroresistance ratio. The FTJ also exhibits excellent retention for more than 10 000 s and good switching endurance for more than 1500 cycles. The results suggest the potential of this HfO2-based FTJ for next generation nonvolatile memories.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []