Evaluation of charge-transfer rates in fullerene-based donor-acceptor dyads with different density functional approximations.

2021 
The shift towards renewable energy is one of the main challenges of this generation. Dye-sensitized solar cells (DSSCs), based on donor-acceptor architectures, can help in this transition as they present excellent photovoltaic efficiencies yet cheap and simple manufacturing. For molecular heterojunction DSSCs, donor-acceptor pairs are linked in a covalent manner, which facilitates their tailoring and rational design. Nevertheless, reliable computational characterization of charge transfer rate constants (kCT) is needed to speed this development process up. In this context, the performance of time-dependent density functional theory for the calculation of kCT values in donor-acceptor fullerene-based dyads has not been benchmarked yet. Herein, we present a detailed analysis on the performance of seven well-known density functional approximations (DFAs) for this type of system, focusing on several parameters such as the reorganization energies (λ), electronic couplings (VDA), and Gibbs energies (ΔG0CT), as well as the final rate constants. The amount of exact exchange at short range (SR) and long range (LR) electron-electron distances (and the transition from the SR to LR) turned out to be key for the success of the prediction. The tuning of these parameters improves significantly the performance of current DFAs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    1
    Citations
    NaN
    KQI
    []